Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression.

نویسندگان

  • Marja Pummila
  • Ingrid Fliniaux
  • Risto Jaatinen
  • Martyn J James
  • Johanna Laurikkala
  • Pascal Schneider
  • Irma Thesleff
  • Marja L Mikkola
چکیده

Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth.

During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain thi...

متن کامل

Ectodermal patterning in vertebrate embryos.

Recent molecular insights on how the ectodermal layer is patterned in vertebrates are reviewed. Studies on the induction of the central nervous system (CNS) by Spemann's Organizer led to the isolation of noggin and chordin. These secretory proteins function by binding to, and inhibiting, ventral BMPs, in particular BMP-4. Neural induction can be considered as the dorsalization of ectoderm, in w...

متن کامل

Ectodermal organ development: Regulation by Notch and Eda pathways

9 1. REVIEW OF THE LITERATURE 9 1.1. Ectodermal Organ Development 9 1.1.1. Origin of ectoderm 9 1.1.2. Common mechanisms in ectoderm 10 al organ development 1.1.3. Introduction to selected molecules with a central role in ectodermal organ development 10 1.1.3.1. Fgf, Bmp, Wnt, Shh pathways 10 1.1.3.2. Notch Pathway 13 1.1.3.3. Tnfs 16 1.1.3.3.1.Ectodysplasin pathway 18 1.1.4. Tooth development ...

متن کامل

Signaling Involved in Hair Follicle Morphogenesis and Development

Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is conside...

متن کامل

The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction

Bone morphogenetic proteins (BMPs) have been shown to play a key role in controlling ectodermal cell fates by inducing epidermis at the expense of neural tissue during gastrulation. Here, we present evidence that the Xenopus POU class V transcription factor XOct-25 regulates ectodermal cell fate decisions by inhibiting the competence of ectodermal cells to respond to BMP during Xenopus embryoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 134 1  شماره 

صفحات  -

تاریخ انتشار 2007